Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(8): 6406-6412, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354307

RESUMO

Understanding and mastering quantum electrodynamics phenomena is essential to the development of quantum nanophotonics applications. While tailoring of the local vacuum field has been widely used to tune the luminescence rate and directionality of a quantum emitter, its impact on their transition energies is barely investigated and exploited. Fluorescent defects in nanosized diamonds constitute an attractive nanophotonic platform to investigate the Lamb shift of an emitter embedded in a dielectric nanostructure with high refractive index. Using spectral and time-resolved optical spectroscopy of single SiV defects, we unveil blue shifts (up to 80 meV) of their emission lines, which are interpreted from model calculations as giant Lamb shifts. Moreover, evidence for a positive correlation between their fluorescence decay rates and emission line widths is observed, as a signature of modifications not only of the photonic local density of states but also of the phononic one, as the nanodiamond size is decreased. Correlative light-electron microscopy of single SiVs and their host nanodiamonds further supports these findings. These results make nanodiamond-SiVs promising as optically driven spin qubits and quantum light sources tunable through nanoscale tailoring of vacuum-field fluctuations.

2.
Opt Express ; 31(15): 24194-24202, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475252

RESUMO

Magneto-optical imaging of quantized magnetic flux tubes in superconductors - Abrikosov vortices - is based on Faraday rotation of light polarization within a magneto-optical indicator placed on top of the superconductor. Due to severe aberrations induced by the thick indicator substrate, the spatial resolution of vortices is usually well beyond the optical diffraction limit. Using a high refractive index solid immersion lens placed onto the indicator garnet substrate, we demonstrate wide field optical imaging of single flux quanta in a Niobium film with a resolution better than 600 nm and sub-second acquisition periods, paving the way to high-precision and fast vortex manipulation. Vectorial field simulations are also performed to reproduce and optimize the experimental features of vortex images.

3.
Nano Lett ; 23(13): 6067-6072, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350682

RESUMO

We investigate the fundamental optical properties of single zinc-blende InP/ZnSe/ZnS nanocrystals (NCs) using frequency- and time-resolved magneto-photoluminescence spectroscopy. At liquid helium temperature, highly resolved spectral fingerprints are obtained and identified as the recombination lines of the three lowest states of the band-edge exciton fine structure. The evolutions of the photoluminescence spectra and decays under magnetic fields show evidence for a ground dark exciton level 0L with zero angular momentum projection along the NC main elongation axis. It lies 300 to 600 µeV below the ±1L bright exciton doublet, which is finely split by the NC shape anisotropy. These spectroscopic findings are well reproduced with a model of exciton fine structure accounting for shape anisotropy of the InP core. Our spectral fingerprints are extremely sensitive to the NC morphologies and unveil highly uniform shapes with prolate deviations of less than 3% from perfect sphericity.

5.
Nat Commun ; 14(1): 229, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646706

RESUMO

Lead halide perovskites open great prospects for optoelectronics and a wealth of potential applications in quantum optical and spin-based technologies. Precise knowledge of the fundamental optical and spin properties of charge-carrier complexes at the origin of their luminescence is crucial in view of the development of these applications. On nearly bulk Cesium-Lead-Bromide single perovskite nanocrystals, which are the test bench materials for next-generation devices as well as theoretical modeling, we perform low temperature magneto-optical spectroscopy to reveal their entire band-edge exciton fine structure and charge-complex binding energies. We demonstrate that the ground exciton state is dark and lays several millielectronvolts below the lowest bright exciton sublevels, which settles the debate on the bright-dark exciton level ordering in these materials. More importantly, combining these results with spectroscopic measurements on various perovskite nanocrystal compounds, we show evidence for universal scaling laws relating the exciton fine structure splitting, the trion and biexciton binding energies to the band-edge exciton energy in lead-halide perovskite nanostructures, regardless of their chemical composition. These scaling laws solely based on quantum confinement effects and dimensionless energies offer a general predictive picture for the interaction energies within charge-carrier complexes photo-generated in these emerging semiconductor nanostructures.

6.
Soft Matter ; 18(29): 5509-5517, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848600

RESUMO

Studying the Brownian motion of fibers and semi-flexible filaments in porous media is the key to understanding the transport and mechanical properties in a variety of systems. The motion of semi-flexible filaments in gel-like porous media including polymer networks and cell cytoskeleton has been studied theoretically and experimentally, whereas the motion of these materials in packed-colloid porous media, advanced foams, and rock-like systems has not been thoroughly studied. Here we use video microscopy to directly visualize the reptation and transport of intrinsically fluorescent, semiflexible, semiconducting single-walled carbon nanotubes (SWCNTs) in the sub-micron pores of packed colloids as fixed obstacles of packed-colloid porous media. By visualizing the filament motion and Brownian diffusion at different locations in the pore structures, we study how the properties of the environment, like the pore shape and pore structure of the porous media, affect SWCNT mobility. These results show that the porous media structure controls SWCNT reorientation during Brownian diffusion. In packed-colloid pores, SWCNTs diffuse along straight pores and bend across pores; conversely, in gel pores, SWCNTs consistently diffuse into curved pores, displaying a faster parallel motion. In both gel and packed-colloid porous media, SWCNT finite stiffness enhances SWCNT rotational diffusion and prevents jamming, allowing for inter-pore diffusion.


Assuntos
Nanotubos de Carbono , Coloides/química , Difusão , Movimento (Física) , Nanotubos de Carbono/química , Porosidade
7.
ACS Nano ; 15(11): 17573-17581, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34546035

RESUMO

Semiconductor copper indium sulfide quantum dots are emerging as promising alternatives to cadmium- and lead-based chalcogenides in solar cells, luminescent solar concentrators, and deep-tissue bioimaging due to their inherently lower toxicity and outstanding photoluminescence properties. However, the nature of their emission pathways remains a subject of debate. Using low-temperature single quantum dot spectroscopy on core-shell copper indium sulfide nanocrystals, we observe two subpopulations of particles with distinct spectral features. The first class shows sharp resolution-limited emission lines that are attributed to zero-phonon recombination lines of a long-lived band-edge exciton. Such emission results from the perfect passivation of the copper indium sulfide core by the zinc sulfide shell and points to an inversion in the band-edge hole levels. The second class exhibits ultrabroad spectra regardless of the temperature, which is a signature of the extrinsic self-trapping of the hole assisted by defects in imperfectly passivated quantum dots.

8.
Nanomaterials (Basel) ; 11(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924196

RESUMO

Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photovoltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. In this review, we give an overview of recent magneto-optical spectroscopic studies revealing the entire excitonic fine structure and relaxation mechanisms in these materials, using a single-NC approach to get rid of their inhomogeneities in morphology and crystal structure. We highlight the prominent role of the electron-hole exchange interaction in the order and splitting of the bright triplet and dark singlet exciton sublevels and discuss the effects of size, shape anisotropy and dielectric screening on the fine structure. The spectral and temporal manifestations of thermal mixing between bright and dark excitons allows extracting the specific nature and strength of the exciton-phonon coupling, which provides an explanation for their remarkably bright photoluminescence at low temperature although the ground exciton state is optically inactive. We also decipher the spectroscopic characteristics of other charge complexes whose recombination contributes to photoluminescence. With the rich knowledge gained from these experiments, we provide some perspectives on perovskite NCs as quantum light sources.

9.
Nat Commun ; 11(1): 6001, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243976

RESUMO

Cesium lead halide perovskites exhibit outstanding optical and electronic properties for a wide range of applications in optoelectronics and for light-emitting devices. Yet, the physics of the band-edge exciton, whose recombination is at the origin of the photoluminescence, is not elucidated. Here, we unveil the exciton fine structure of individual cesium lead iodide perovskite nanocrystals and demonstrate that it is governed by the electron-hole exchange interaction and nanocrystal shape anisotropy. The lowest-energy exciton state is a long-lived dark singlet state, which promotes the creation of biexcitons at low temperatures and thus correlated photon pairs. These bright quantum emitters in the near-infrared have a photon statistics that can readily be tuned from bunching to antibunching, using magnetic or thermal coupling between dark and bright exciton sublevels.

10.
Nano Lett ; 20(9): 6488-6493, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787167

RESUMO

Superconductors can host quantized magnetic flux tubes surrounded by supercurrents, called Abrikosov vortices. Vortex penetration into a superconducting film is usually limited to its edges and triggered by external magnetic fields or local electrical currents. With a view to novel research directions in quantum computation, the possibility to generate and control single flux quanta in situ is thus challenging. We introduce a far-field optical method to sculpt the magnetic flux or generate permanent single vortices at any desired position in a superconductor. It is based on a fast quench following the absorption of a tightly focused laser pulse that locally heats the superconductor above its critical temperature. We achieve ex-nihilo creation of a single vortex pinned at the center of the hotspot, while its counterpart opposite flux is trapped tens of micrometers away at its boundaries. Our method paves the way to optical operation of Josephson transport with single flux quanta.

11.
Nanoscale ; 12(12): 6795-6802, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32181469

RESUMO

Single cesium lead bromide (CsPbBr3) nanocrystals show strong photoluminescence intermittency, with on- and off- dwelling times following power-law distributions. We investigate the correlations for successive on-times and successive off-times, and find a memory effect in the photoluminescence intermittency of such inorganic perovskite nanocrystals. This memory effect is not sensitive to the nature of the surface capping ligand and the embedding polymer. These observations suggest that photoluminescence intermittency and its memory are mainly controlled by intrinsic traps in the nanocrystals. Our findings will help optimizing light-emitting devices based on these perovskite nanocrystals.

12.
Nat Mater ; 18(7): 717-724, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31086320

RESUMO

Lead halide perovskites have emerged as promising new semiconductor materials for high-efficiency photovoltaics, light-emitting applications and quantum optical technologies. Their luminescence properties are governed by the formation and radiative recombination of bound electron-hole pairs known as excitons, whose bright or dark character of the ground state remains unknown and debated. While symmetry analysis predicts a singlet non-emissive ground exciton topped with a bright exciton triplet, it has been predicted that the Rashba effect may reverse the bright and dark level ordering. Here, we provide the direct spectroscopic signature of the dark exciton emission in the low-temperature photoluminescence of single formamidinium lead bromide perovskite nanocrystals under magnetic fields. The dark singlet is located several millielectronvolts below the bright triplet, in fair agreement with an estimation of the long-range electron-hole exchange interaction. Nevertheless, these perovskites display an intense luminescence because of an extremely reduced bright-to-dark phonon-assisted relaxation.

13.
Angew Chem Int Ed Engl ; 57(49): 16094-16098, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30311989

RESUMO

Post-synthetic shape-transformation processes provide access to colloidal nanocrystal morphologies that are unattainable by direct synthetic routes. Herein, we report our finding about the ligand-induced fragmentation of CsPbBr3 perovskite nanowires (NWs) into low aspect-ratio CsPbX3 (X=Cl, Br and I) nanorods (NRs) during halide ion exchange reaction with PbX2 -ligand solution. The shape transformation of NWs-to-NRs resulted in an increase of photoluminescence efficiency owing to a decrease of nonradiative decay rates. Importantly, we found that the perovskite NRs exhibit single photon emission as revealed by photon antibunching measurements, while it is not detected in parent NWs. This work not only reports on the quantum light emission of low aspect ratio perovskite NRs, but also expands our current understanding of shape-dependent optical properties of perovskite nanocrystals.

14.
Nat Commun ; 9(1): 3318, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127339

RESUMO

Formamidinium lead iodide (FAPbI3) exhibits the narrowest bandgap energy among lead halide perovskites, thus playing a pivotal role for the development of photovoltaics and near-infrared classical or quantum light sources. Here, we unveil the fundamental properties of FAPbI3 by spectroscopic investigations of nanocrystals of this material at the single-particle level. We show that these nanocrystals deliver near-infrared single photons suitable for quantum communication. Moreover, the low temperature photoluminescence spectra of FAPbI3 nanocrystals reveal the optical phonon modes responsible for the emission line broadening with temperature and a vanishing exciton-acoustic phonon interaction in these soft materials. The photoluminescence decays are governed by thermal mixing between fine structure states, with a two-optical phonon Raman scattering process. These results point to a strong Frölich interaction and to a phonon glass character that weakens the interactions of charge carriers with acoustic phonons and thus impacts their relaxation and mobility in these perovskites.

15.
ACS Nano ; 12(6): 6059-6065, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29889499

RESUMO

The intrinsic near-infrared photoluminescence observed in long single-walled carbon nanotubes is known to be quenched in ultrashort nanotubes due to their tiny size as compared to the exciton diffusion length in these materials (>100 nm). Here, we show that intense photoluminescence can be created in ultrashort nanotubes (∼40 nm length) upon incorporation of exciton-trapping sp3 defect sites. Using super-resolution photoluminescence imaging at <25 nm resolution, we directly show the preferential localization of excitons at the nanotube ends, which separate by less than 40 nm and behave as independent emitters. This unexpected observation opens the possibility to synthesize fluorescent ultrashort nanotubes-a goal that has been long thought impossible-for bioimaging applications, where bright near-infrared photoluminescence and small size are highly desirable, and for quantum information science, where high quality and well-controlled near-infrared single photon emitters are needed.

16.
Nat Methods ; 15(6): 449-454, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29713082

RESUMO

Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Microscopia de Interferência/métodos , Imagem Individual de Molécula/métodos , Actinas/química , Actinas/fisiologia , Humanos , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/fisiologia , Células-Tronco Pluripotentes
17.
Nanomaterials (Basel) ; 7(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144410

RESUMO

Fluorescence imaging of biological systems down to the single-molecule level has generated many advances in cellular biology. For applications within intact tissue, single-walled carbon nanotubes (SWCNTs) are emerging as distinctive single-molecule nanoprobes, due to their near-infrared photoluminescence properties. For this, SWCNT surfaces must be coated using adequate molecular moieties. Yet, the choice of the suspension agent is critical since it influences both the chemical and emission properties of the SWCNTs within their environment. Here, we compare the most commonly used surface coatings for encapsulating photoluminescent SWCNTs in the context of bio-imaging applications. To be applied as single-molecule nanoprobes, encapsulated nanotubes should display low cytotoxicity, and minimal unspecific interactions with cells while still being highly luminescent so as to be imaged and tracked down to the single nanotube level for long periods of time. We tested the cell proliferation and cellular viability of each surface coating and evaluated the impact of the biocompatible surface coatings on nanotube photoluminescence brightness. Our study establishes that phospholipid-polyethylene glycol-coated carbon nanotube is the best current choice for single nanotube tracking experiments in live biological samples.

18.
Nat Commun ; 8: 15716, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604705

RESUMO

Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices.

19.
Nanoscale ; 9(14): 4642-4645, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28327707

RESUMO

Assessment of biodegradability of carbon nanotubes (CNTs) is a critically important aspect that needs to be solved before their translation into new biomedical tools. CNT biodegradation has been shown both in vitro and in vivo, but we are limited by the number of analytical techniques that can be used to follow the entire process. Photothermal imaging (PhI) is an innovative technique that enables the quantitative detection of nanometer-sized absorptive objects. In this study, we demonstrate that PhI allows the observation of the degradation process of functionalized multi-walled carbon nanotubes (MWCNTs) following their internalization by primary glial cells. The absence of interference from the biological matrix components, together with the possibility to combine PhI with other detection techniques (e.g. fluorescence, light or electron microscopy) validate the potential of this method to follow the fate and behavior of carbon nanostructures in a biological environment.

20.
Adv Sci (Weinh) ; 4(2): 1600280, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28251050

RESUMO

The synthesis, sorting, and characterization of monodisperse gold nanorods with dimensions around 10 nm in length and below 6 nm in diameter is reported. They display tunable plasmon resonance in the near infrared, a region where cellular absorption is reduced. A dual color photothermal microscope is developed to demonstrate that they are promising single molecule probes for bioimaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...